SERIE D'EXERCICES Suites réelles

Ascolaire : 2010/2011

Exercice 1:

Soit la suite U définie sur IN par $\begin{cases} U_0 = 2 \\ U_{{\scriptscriptstyle n+1}} = 2 - \frac{1}{U_{{\scriptscriptstyle n}}} \end{cases}$

- 1/a) Montrer par récurrence que pour tout entier naturel n, on a : Un > 1
 - b) Montrer que la suite U est décroissante
- 2/ Soit V la suite définie sur IN par : $V_n = 3 + \frac{1}{U_n 1}$
 - a) Montrer que V est une suite arithmétique dont on précisera la raison et le premier terme
 - b) Exprimer V_n en fonction n et en déduire que $U_n = \frac{n+2}{n+1}$
 - c) Calculer $\lim_{n\to +\infty} U_n$ et la somme $\,S = \sum_{k=1}^{50} v_k^{}$

Exercice 2:

Soit (U_n), la suite définie par: $U_n = \frac{2n+1}{n+3}$.

- 1) Déterminer le sens de variation de cette suite ; en déduire un minorant.
- 2) Montrer que cette suite est majorée par 2.
- 3) Exprimer $2-U_n$ en fonction de n. En déduire pour quels rangs p on a : 1,999 $\leq U_p \leq 2$. Combien la suite (U_n) possède-t-elle de termes n'appartenant pas à l'intervalle [1,999; 2]?

Exercice 3:

On considère la fonction numérique f définie sur $\left[-\frac{3}{2};+\infty\right[$ par $f(x)=\sqrt{2x+3}$ et la suite (U_n) définie par son premier terme U_0 et la relation de récurrence : $U_{n+1}=f(U_n)$.

A/ On prend $U_0 = 0$.

- 1) Tracer la courbe représentative de f et construire les premiers termes de la suite (U_n).
- 2) Montrer que si $x \in [0; 3]$, alors $f(x) \in [0; 3]$.
- 3) En déduire que tous les termes de la suite appartiennent à l'intervalle [0; 3].
- 4) Montrer que, pour tout entier naturel n, on a l'égalité :

$$U_{n+1} - U_n = \frac{(3 - U_n)(U_n + 1)}{\sqrt{2U_n + 3} + U_n}$$
 En déduire le sens de variation de la suite.

B/ On prend maintenant $U_0 = 4$. En adaptant les questions de la partie A, montrer que la suite (U_n) est minorée par 3 et est décroissante.